Veterinary Sciences (Sep 2024)

A Recombinant Lentiviral Vegfr2-Silencing Vector Attenuates Roxarsone-Promoted Growth of Rat Vascular Endothelial Cells and Angiogenesis in Matrigel Plug and B16F10 Xenograft Models

  • Xin Chen,
  • Lin Chen,
  • Binlin Chen,
  • Qianhan Wei,
  • Yinchao Wu,
  • Yumei Zhang

DOI
https://doi.org/10.3390/vetsci11100451
Journal volume & issue
Vol. 11, no. 10
p. 451

Abstract

Read online

Roxarsone (ROX) is widely used as a feed addictive for livestock and poultry. ROX promotes angiogenesis, which can lead to health problems, and it is necessary to identify methods to counter this angiogenic effect of ROX. The VEGF/VEGFR2 signaling pathway is involved in the growth and reconstruction of new blood vessels during angiogenesis. In this study, a recombinant lentiviral vector encoding Vegfr2 shRNA was transfected into rat vascular endothelial cells and used in mouse matrigel plug and melanoma xenograft models to investigate its potential to regulate ROX-induced angiogenesis and tumor growth. Treating endothelial cells with ROX increased cell proliferation, migration, and a tube-like structure of growth relative to the control group. The addition of the lentiviral Vegfr2-silencing vector significantly attenuated the effects of ROX on endothelial cells. The hemoglobin content of mouse matrigel plugs treated with ROX was increased significantly. This effect was dramatically attenuated by the co-administration of shRNA targeting Vegfr2. The volume, weight and CD34 staining of the melanoma xenograft tumors increased by ROX were also attenuated by Vegfr2 silence. These results indicate that the down-regulation of VEGFR2 protein plays an inhibitory role in the ROX-promoted angiogenesis in vivo and in vitro. These data support the targeting of Vegfr2 gene as an effective means to treat ROX-induced angiogenesis and tumor growth.

Keywords