PLoS ONE (Jan 2014)

An analysis of the global expression of microRNAs in an experimental model of physiological left ventricular hypertrophy.

  • Nidiane C Martinelli,
  • Carolina R Cohen,
  • Kátia G Santos,
  • Mauro A Castro,
  • Andréia Biolo,
  • Luzia Frick,
  • Daiane Silvello,
  • Amanda Lopes,
  • Stéfanie Schneider,
  • Michael E Andrades,
  • Nadine Clausell,
  • Ursula Matte,
  • Luis E Rohde

DOI
https://doi.org/10.1371/journal.pone.0093271
Journal volume & issue
Vol. 9, no. 4
p. e93271

Abstract

Read online

BACKGROUND: MicroRNAs (miRs) are a class of small non-coding RNAs that regulate gene expression. Studies of transgenic mouse models have indicated that deregulation of a single miR can induce pathological cardiac hypertrophy and cardiac failure. The roles of miRs in the genesis of physiological left ventricular hypertrophy (LVH), however, are not well understood. OBJECTIVE: To evaluate the global miR expression in an experimental model of exercise-induced LVH. METHODS: Male Balb/c mice were divided into sedentary (SED) and exercise (EXE) groups. Voluntary exercise was performed on an odometer-monitored metal wheels for 35 days. Various tests were performed after 7 and 35 days of training, including a transthoracic echocardiography, a maximal exercise test, a miR microarray (miRBase v.16) and qRT-PCR analysis. RESULTS: The ratio between the left ventricular weight and body weight was increased by 7% in the EXE group at day 7 (p<0.01) and by 11% at day 35 of training (p<0.001). After 7 days of training, the microarray identified 35 miRs that were differentially expressed between the two groups: 20 were up-regulated and 15 were down-regulated in the EXE group compared with the SED group (p = 0.01). At day 35 of training, 25 miRs were differentially expressed: 15 were up-regulated and 10 were decreased in the EXE animals compared with the SED animals (p<0.01). The qRT-PCR analysis demonstrated an increase in miR-150 levels after 35 days and a decrease in miR-26b, miR-27a and miR-143 after 7 days of voluntary exercise. CONCLUSIONS: We have identified new miRs that can modulate physiological cardiac hypertrophy, particularly miR-26b, -150, -27a and -143. Our data also indicate that previously established regulatory gene pathways involved in pathological LVH are not changed in physiological LVH.