Nature Communications (Jun 2021)

Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs

  • Qingbo S. Wang,
  • David R. Kelley,
  • Jacob Ulirsch,
  • Masahiro Kanai,
  • Shuvom Sadhuka,
  • Ran Cui,
  • Carlos Albors,
  • Nathan Cheng,
  • Yukinori Okada,
  • The Biobank Japan Project,
  • Francois Aguet,
  • Kristin G. Ardlie,
  • Daniel G. MacArthur,
  • Hilary K. Finucane

DOI
https://doi.org/10.1038/s41467-021-23134-8
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Finding causal variants and genes from GWAS loci results remains a challenge. Here, the authors train a model to predict if a variant affects nearby gene expression, and apply the method to identify new possible causal eQTLs and mechanisms of GWAS loci.