PLoS ONE (Jan 2019)

Mechanical effects of MitraClip on leaflet stress and myocardial strain in functional mitral regurgitation - A finite element modeling study.

  • Yue Zhang,
  • Vicky Y Wang,
  • Ashley E Morgan,
  • Jiwon Kim,
  • Mark D Handschumacher,
  • Chaya S Moskowitz,
  • Robert A Levine,
  • Liang Ge,
  • Julius M Guccione,
  • Jonathan W Weinsaft,
  • Mark B Ratcliffe

DOI
https://doi.org/10.1371/journal.pone.0223472
Journal volume & issue
Vol. 14, no. 10
p. e0223472

Abstract

Read online

PurposeMitraClip is the sole percutaneous device approved for functional mitral regurgitation (MR; FMR) but MR recurs in over one third of patients. As device-induced mechanical effects are a potential cause for MR recurrence, we tested the hypothesis that MitraClip increases leaflet stress and procedure-related strain in sub-valvular left ventricular (LV) myocardium in FMR associated with coronary disease (FMR-CAD).MethodsSimulations were performed using finite element models of the LV + mitral valve based on MRI of 5 sheep with FMR-CAD. Models were modified to have a 20% increase in LV volume (↑LV_VOLUME) and MitraClip was simulated with contracting beam elements (virtual sutures) placed between nodes in the center edge of the anterior (AL) and posterior (PL) mitral leaflets. Effects of MitraClip on leaflet stress in the peri-MitraClip region of AL and PL, septo-lateral annular diameter (SLAD), and procedure-related radial strain (Err) in the sub-valvular myocardium were calculated.ResultsMitraClip increased peri-MitraClip leaflet stress at end-diastole (ED) by 22.3±7.1 kPa (pConclusionsMitraClip for FMR-CAD increases mitral leaflet stress and radial strain in LV sub-valvular myocardium. Mechanical effects of MitraClip are augmented by LV enlargement.