Big Data and Cognitive Computing (Sep 2024)

An Efficient Green AI Approach to Time Series Forecasting Based on Deep Learning

  • Luis Balderas,
  • Miguel Lastra,
  • José M. Benítez

DOI
https://doi.org/10.3390/bdcc8090120
Journal volume & issue
Vol. 8, no. 9
p. 120

Abstract

Read online

Time series forecasting is undoubtedly a key area in machine learning due to the numerous fields where it is crucial to estimate future data points of sequences based on a set of previously observed values. Deep learning has been successfully applied to this area. On the other hand, growing concerns about the steady increase in the amount of resources required by deep learning-based tools have made Green AI gain traction as a move towards making machine learning more sustainable. In this paper, we present a deep learning-based time series forecasting methodology called GreeNNTSF, which aims to reduce the size of the resulting model, thereby diminishing the associated computational and energetic costs without giving up adequate forecasting performance. The methodology, based on the ODF2NNA algorithm, produces models that outperform state-of-the-art techniques not only in terms of prediction accuracy but also in terms of computational costs and memory footprint. To prove this claim, after presenting the main state-of-the-art methods that utilize deep learning for time series forecasting and introducing our methodology we test GreeNNTSF on a selection of real-world forecasting problems that are commonly used as benchmarks, such as SARS-CoV-2 and PhysioNet (medicine), Brazilian Weather (climate), WTI and Electricity (economics), and Traffic (smart cities). The results of each experiment conducted objectively demonstrate, rigorously following the experimentation presented in the original papers that addressed these problems, that our method is more competitive than other state-of-the-art approaches, producing more accurate and efficient models.

Keywords