European Physical Journal C: Particles and Fields (Aug 2022)

Scattering of fermionic isodoublets on the sine-Gordon kink

  • A. Yu. Loginov

DOI
https://doi.org/10.1140/epjc/s10052-022-10649-7
Journal volume & issue
Vol. 82, no. 8
pp. 1 – 18

Abstract

Read online

Abstract The scattering of Dirac fermions on the sine-Gordon kink is studied both analytically and numerically. To achieve invariance with respect to a discrete symmetry, the sine-Gordon model is treated as a nonlinear $$\sigma $$ σ -model with a circular target space that interacts with fermionic isodublets through the Yukawa interaction. It is shown that the diagonal and antidiagonal parts of the fermionic wave function interact independently with the external field of the sine-Gordon kink. The wave functions of the fermionic scattering states are expressed in terms of the Heun functions. General expressions for the transmission and reflection coefficients are derived, and their dependences on the fermion momentum and mass are studied numerically. The existence condition is found for two fermionic zero modes, and their analytical expressions are obtained. It is shown that the zero modes do not lead to fragmentation of the fermionic charge, but can lead to polarization of the fermionic vacuum. The scattering of the diagonal and antidiagonal fermionic states is found to be significantly different; this difference is shown to be due to the different dependences of the energy levels of these bound states on the fermion mass, and is in accordance with Levinson’s theorem.