PLoS ONE (Jan 2020)
The 2015-2016 El Niño increased infection parameters of copepods on Eastern Tropical Pacific dolphinfish populations.
Abstract
The oceanographic conditions of the Pacific Ocean are largely modified by El Niño (EN), affecting several ecological processes. Parasites and other marine organisms respond to environmental variation, but the influence of the EN cycle on the seasonal variation of parasitic copepods has not been yet evaluated. We analysed the relation between infection parameters (prevalence and mean intensity) of the widespread parasitic copepods Caligus bonito and Charopinopsis quaternia in the dolphinfish Coryphaena hippurus and oceanography during the strong 2015-16 EN. Fish were collected from capture fisheries on the Ecuadorian coast (Tropical Eastern Pacific) over a 2-year period. Variations of sea surface temperature (SST), salinity, chlorophyll a (Chl-a), Oceanic Niño Index (ONI), total host length (TL) and monthly infection parameters of both copepod species were analysed using time series and cross-correlations. We used the generalised additive models for determine the relationship between environmental variables and infection parameters. The total body length of the ovigerous females and the length of the eggs of C. bonito were measured in both periods. Infection parameters of both C. bonito and Ch. quaternia showed seasonal and annual patterns associated with the variation of environmental variables examined (SST, salinity, Chl-a and ONI 1+2). Infection parameters of both copepod species were significantly correlated with ONI 1+2, SST, TL and Chl-a throughout the GAMLSS model, and the explained deviance contribution ranged from 16%-36%. Our results suggest than an anomaly higher than +0.5°C triggers a risen in infection parameters of both parasitic copepods. This risen could be related to increases in egg length, female numbers and the total length of the ovigerous females in EN period. This study provides the first evidence showing that tropical parasitic copepods are sensitive to the influence of EN event, especially from SST variations. The observed behaviour of parasitic copepods likely affects the host populations and structure of the marine ecosystem at different scales.