Stable Identification of Sources Located on Interface of Nonhomogeneous Media
José Julio Conde Mones,
Emmanuel Roberto Estrada Aguayo,
José Jacobo Oliveros Oliveros,
Carlos Arturo Hernández Gracidas,
María Monserrat Morín Castillo
Affiliations
José Julio Conde Mones
Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, Puebla C.P. 72570, Mexico
Emmanuel Roberto Estrada Aguayo
Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, Puebla C.P. 72570, Mexico
José Jacobo Oliveros Oliveros
Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, Puebla C.P. 72570, Mexico
Carlos Arturo Hernández Gracidas
CONACYT-BUAP, Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, Puebla C.P. 72570, Mexico
María Monserrat Morín Castillo
Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, Puebla C.P. 72570, Mexico
This paper presents a stable method for the identification of sources located on the separation interface of two homogeneous media (where one of them is contained by the other one), from measurement yielded by those sources on the exterior boundary of the media. This is an ill-posed problem because numerical instability is presented, i.e., minimal errors in the measurement can result in significant changes in the solution. To obtain the proposed stable method the identification problem is categorized into three subproblems, two of which present numerical instability and regularization methods must be applied to obtain their solution in a stable form. To manage the numerical instability due to the ill-posedness of these subproblems, the Tikhonov regularization and sequential smoothing methods are used. We illustrate this methodology in a circular and irregular region to demonstrate the feasibility of the proposed method, which yields convergent and stable solutions for input data with and without noise.