Results in Engineering (Dec 2024)
Channel flow dynamics of fractional viscoelastic nanofluids in molybdenum disulphide grease: A case study
Abstract
Nanoscopic fluids especially viscoelastic Nanofluids are very useful in engineering and industrial problems. This research is to determine the open channel flow of a viscoelastic nanofluid (namely Oldroyd-B (OBNF)). Oldroyd-B fluid (OBF) was used as the base fluid and molybdenum disulphide nanopatrials were added in the fluid to form desired OBNF. To convert the mathematical model to a fractional model from a classical order partial differential equation PDE, fractional type derivative named Caputo-Fabrizio (CF) was used. The main objective of this study is to find the exact mathematical solution for the temperature, concentration and velocity distributions by using integral transformation technique. Final results are discussed graphically for the influence of different parameters on calculated temperature, concentration and velocity. Skin friction of the said fluid and engineering related dimensionless numbers including Reynolds number (Re), Prandtl number (Pr), Grashof number (Gr) and Schmidt number (Sc) are also discussed. At the end a comparison is illustrated in graphical form between current studied fluid (i.e. OBNF), another non-Newtonian fluid (i.e. Maxwell Nanofluid (MWNF)) and Newtonian fluid. As we know speed of Newtonian fluid is greater than non-Newtonian fluid, the same statement is validated by our solution. It is also noted that adding molybdenum disulphide nanoparticles to grease, heat transmission increased to 19.11% and mass transmission decreased to 2.51%.