Quantitative Muscle MRI in Patients with Neuromuscular Diseases—Association of Muscle Proton Density Fat Fraction with Semi-Quantitative Grading of Fatty Infiltration and Muscle Strength at the Thigh Region
Sarah Schlaeger,
Nico Sollmann,
Agnes Zoffl,
Edoardo Aitala Becherucci,
Dominik Weidlich,
Elisabeth Kottmaier,
Isabelle Riederer,
Tobias Greve,
Federica Montagnese,
Marcus Deschauer,
Benedikt Schoser,
Claus Zimmer,
Dimitrios C. Karampinos,
Jan S. Kirschke,
Thomas Baum
Affiliations
Sarah Schlaeger
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Nico Sollmann
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Agnes Zoffl
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Edoardo Aitala Becherucci
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Dominik Weidlich
Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Elisabeth Kottmaier
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Isabelle Riederer
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Tobias Greve
Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
Federica Montagnese
Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Ziemssenstr. 1a, 80336 Munich, Germany
Marcus Deschauer
Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Benedikt Schoser
Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Ziemssenstr. 1a, 80336 Munich, Germany
Claus Zimmer
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Dimitrios C. Karampinos
Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Jan S. Kirschke
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Thomas Baum
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
(1) Background and Purpose: The skeletal muscles of patients suffering from neuromuscular diseases (NMD) are affected by atrophy, hypertrophy, fatty infiltration, and edematous changes. Magnetic resonance imaging (MRI) is an important tool for diagnosis and monitoring. Concerning fatty infiltration, T1-weighted or T2-weighted DIXON turbo spin echo (TSE) sequences enable a qualitative assessment of muscle involvement. To achieve higher comparability, semi-quantitative grading scales, such as the four-point Mercuri scale, are commonly applied. However, the evaluation remains investigator-dependent. Therefore, effort is being invested to develop quantitative MRI techniques for determination of imaging markers such as the proton density fat fraction (PDFF). The present work aims to assess the diagnostic value of PDFF in correlation to Mercuri grading and clinically determined muscle strength in patients with myotonic dystrophy type 2 (DM2), limb girdle muscular dystrophy type 2A (LGMD2A), and adult Pompe disease. (2) Methods: T2-weighted two-dimensional (2D) DIXON TSE and chemical shift encoding-based water-fat MRI were acquired in 13 patients (DM2: n = 5; LGMD2A: n = 5; Pompe disease: n = 3). Nine different thigh muscles were rated in all patients according to the Mercuri grading and segmented to extract PDFF values. Muscle strength was assessed according to the British Medical Research Council (BMRC) scale. For correlation analyses between Mercuri grading, muscle strength, and PDFF, the Spearman correlation coefficient (rs) was computed. (3) Results: Mean PDFF values ranged from 7% to 37% in adults with Pompe disease and DM2 and up to 79% in LGMD2A patients. In all three groups, a strong correlation of the Mercuri grading and PDFF values was observed for almost all muscles (rs > 0.70, p rs = −0.80, p < 0.01). (4) Conclusion: In the small, investigated patient cohort, PDFF offers similar diagnostic precision as the clinically established Mercuri grading. Based on these preliminary data, PDFF could be further considered as an MRI-based biomarker in the assessment of fatty infiltration of muscle tissue in NMD. Further studies with larger patient cohorts are needed to advance PDFF as an MRI-based biomarker in NMD, with advantages such as its greater dynamic range, enabling the assessment of subtler changes, the amplified objectivity, and the potential of direct correlation to muscle function for selected muscles.