Biomedicines (Jul 2022)

Enhanced Antibacterial Activity of a Cationic Macromolecule by Its Complexation with a Weakly Active Pyrazole Derivative

  • Anna Maria Schito,
  • Debora Caviglia,
  • Chiara Brullo,
  • Alessia Zorzoli,
  • Danilo Marimpietri,
  • Silvana Alfei

DOI
https://doi.org/10.3390/biomedicines10071607
Journal volume & issue
Vol. 10, no. 7
p. 1607

Abstract

Read online

Molecules containing the pyrazole nucleus are widely reported as promising candidates to develop new antimicrobial compounds against multidrug-resistant (MDR) bacteria, where available antibiotics may fail. Recently, aiming at improving the too-high minimum inhibitory concentrations (MICs) of a pyrazole hydrochloride salt (CB1H), CB1H-loaded nanoparticles (CB1H-P7 NPs) were developed using a potent cationic bactericidal macromolecule (P7) as polymer matrix. Here, CB1H-P7 NPs have been successfully tested on several clinical isolates of Gram-positive and Gram-negative species, including relevant MDR strains. CB1H-P7 NPs displayed very low MICs (0.6–4.8 µM), often two-fold lower than those of P7, on 34 out of 36 isolates tested. Upon complexation, the antibacterial effects of pristine CB1H were improved by 2–16.4-fold, and, unexpectedly, also the already potent antibacterial effects of P7 were 2–8 times improved against most of bacteria tested when complexed with CB1H. Time-killing experiments performed on selected species established that CB1H-P7 NPs were bactericidal against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Selectivity indices values up to 2.4, determined by cytotoxicity experiments on human keratinocytes, suggested that CB1H-P7 NPs could be promising for counteracting serious infections sustained by most of the isolates tested in this study.

Keywords