Atoms (Feb 2023)

Methane Cluster Fragmentation by Fast Electron Impact

  • Shuncheng Yan,
  • Ruitian Zhang,
  • Shaofeng Zhang,
  • Xinwen Ma

DOI
https://doi.org/10.3390/atoms11020035
Journal volume & issue
Vol. 11, no. 2
p. 35

Abstract

Read online

We investigate the fragmentation of the CH4 cluster by fast electron impact at stagnation pressures from 0.5 bar to 16 bar. By measuring the time of flight spectrum (TOF), two types of ions, including (CH4)n−1CH5+ and (CH4)n−2(C2Hm)+, are observed. In the 1D TOF spectrum, it is shown that for the stagnation pressure larger than 4 bar, the former ion is predominant for each n, similar to the previous experimental result. However, as the pressure decreases to 0.5 or 2 bar, the contribution of the C2Hm+ ion is dominant over that of the CH4CH5+ ion. In the 2D coincident TOF spectrum, the above two patterns of ions are also distinguished, and the enhancement of C2Hm+ is observed at 4 bar pressure. The phenomena appearing in 2D and 1D TOF spectra imply that the C2Hm+ ion prefers to survive in a smaller cluster, while the stabilization of the protonated ion needs a more massive cluster environment.

Keywords