Marine Drugs (Mar 2022)

Salmon Protein Hydrolysate Potentiates the Growth Inhibitory Effect of Bicalutamide on Human Prostate Cancer Cell Lines LNCaP and PC3 by Modulating Iron Homeostasis

  • Christian Bjerknes,
  • Bomi Framroze,
  • Crawford Currie,
  • Caroline Hild Hakvåg Pettersen,
  • Karol Axcrona,
  • Erland Hermansen

DOI
https://doi.org/10.3390/md20040228
Journal volume & issue
Vol. 20, no. 4
p. 228

Abstract

Read online

Prostate cancer is a common cause of cancer death in men. In advanced stages of prostate cancer, androgen deprivation therapy (ADT) is initiated. Despite ADT, prostate cancers invariably progress to become androgen independent. A growing body of evidence implicates iron dysmetabolism in prostate cancer progression. A bioactive peptide-rich salmon protein hydrolysate (SPH) has previously been demonstrated to modulate iron homeostatic mechanisms. In the present study, the anticancer effect of SPH and bicalutamide co-treatment on LNCaP and PC3 prostate cancer cell proliferation was investigated. Our results found that SPH potentiates the anti-proliferative effect of bicalutamide in a dose-dependent manner for both cell lines. In the presence of 160 µg/mL SPH, co-treatment with 1.0 µM bicalutamide decreased LNCaP cells’ relative colony survival from 25% (1.0 µM bicalutamide monotreatment) to 2% after culturing for 12 days. For PC3 cells, the relative colony survival diminished from 52% (10.0 µM bicalutamide) to 32% at an SPH concentration of 160 µg/mL. Gene expression profiling, employing quantitative real-time PCR, revealed that the inhibitory effects were related to significant FTH1 up-regulation with a concomitant TFRC down-regulation. In conclusion, our results provide in vitro evidence that SPH potentiates the growth inhibitory effect of bicalutamide on prostate cancer cells by modulating iron homeostasis mechanisms.

Keywords