Scientific Reports (Feb 2024)
Comprehensive characterization of the structure of Zr-based metallic glasses
Abstract
Abstract Structure of metallic glasses fascinates as the generic amorphous structural template for ubiquitous systems. Its specification necessitates determination of the complete hierarchical structure, starting from short-range-order (SRO) → medium-range-order (MRO) → bulk structure and free volume (FV) distribution. This link has largely remained elusive since previous investigations adopted one-technique-at-a-time approach, focusing on limited aspects of any one domain. Reconstruction of structure from experimental data inversion is non-unique for many of these techniques. As a result, complete and precise structural understanding of glass has not emerged yet. In this work, we demonstrate the first experimental pathway for reconstruction of the integrated structure, for $${\text{Zr}}_{{{67}}} {\text{Ni}}_{{{33}}}$$ Zr 67 Ni 33 and $${\text{Zr}}_{{{52}}} {\text{Ti}}_{{6}} {\text{Al}}_{{{10}}} {\text{Cu}}_{{{18}}} {\text{Ni}}_{{{14}}}$$ Zr 52 Ti 6 Al 10 Cu 18 Ni 14 glasses. Our strategy engages diverse (× 7) multi-scale techniques [XAFS, 3D-APT, ABED/NBED, FEM, XRD, PAS, FHREM] on the same glass. This strategy complemented mutual limitations of techniques and corroborated common parameters to generate complete, self-consistent and precise parameters. Further, MRO domain size and inter-void separation were correlated to identify the presence of FV at MRO boundaries. This enabled the first experimental reconstruction of hierarchical subset: SRO → MRO → FV → bulk structure. The first ever image of intermediate region between MRO domains emerged from this link. We clarify that determination of all subsets is not our objective; the essence and novelty of this work lies in directing the pathway towards finite solution, in the most logical and unambiguous way.