Molecular Therapy: Oncolytics (Mar 2021)

Inhibition of tumor invasion and metastasis by targeting TGF-β-Smad-MMP2 pathway with Asiatic acid and Naringenin

  • Guang-Yu Lian,
  • Qing-Ming Wang,
  • Thomas Shiu-Kwong Mak,
  • Xiao-Ru Huang,
  • Xue-Qing Yu,
  • Hui-Yao Lan

Journal volume & issue
Vol. 20
pp. 277 – 289

Abstract

Read online

Transforming growth factor β (TGF-β) has been shown to promote tumor invasion and metastasis by activating the matrix metalloproteinases (MMPs); however, signaling mechanisms remain controversial and therapies targeting MMPs are still suboptimal. In the present study, we found that combined therapy with Asiatic acid (AA), a Smad7 agonist, and Naringenin (NG), a Smad3 inhibitor, effectively retrieved the balance between Smad3 and Smad7 signaling in the TGF-β-rich tumor microenvironment and thus significantly suppressed tumor invasion and metastasis in mouse models of melanoma and lung carcinoma. Mechanistically, we unraveled that Smad3 acted as a transcriptional activator of MMP2 and as a transcriptional suppressor of tissue inhibitors of metalloproteinase-2 (TIMP2) via binding to 5′ UTR of MMP2 and 3′ UTR of TIMP2, respectively. Treatment with NG inhibited Smad3-mediated MMP2 transcription while increasing TIMP, whereas treatment with AA enhanced Smad7 to suppress TGF-β/Smad3 signaling, as well as the activation of MMP2 by targeting the nuclear factor-κB (NF-κB)-membrane-type-1 MMP (MT1-MMP) axis. Therefore, the combination of AA and NG additively suppressed invasion and metastasis of melanoma and lung carcinoma by targeting TGF-β/Smad-dependent MMP2 transcription, post-translational activation, and function.

Keywords