E3S Web of Conferences (Jan 2024)

One-vs-Rest vs. Voting Classifiers for Multi-Label Text Classification: An Empirical Study

  • V. Ashwinkumar,
  • Arage Prajwal Pramod,
  • R. Jeya,
  • Sudhakaran Pradeep

DOI
https://doi.org/10.1051/e3sconf/202449101014
Journal volume & issue
Vol. 491
p. 01014

Abstract

Read online

Inthispaper,weconductanempiricalstudytocompare the performance of two popular approaches for multi-label text classification, which is a challenging task in naturallanguageprocessingthatrequirespredictingmultiplelabelsforagiventext:One-vs-RestandVotingclassifiers.Weevaluatetheseclassifiersonadatasetoftoxiccommentsandmeasuretheir performance using accuracy and hamming loss evaluationmetrics.OurexperimentalresultsshowthattheOne-vs-RestclassifierwithXGBoutperformstheVotingclassifierandachievesanaccuracyof91.7%.Thestudy’sresultscanbeusedasabenchmarkforfutureresearchinthisarea,andtheinsightsgained can be used to improve the accuracy and robustness ofmulti-label text classification models. Furthermore, our findingssuggest that the One-vs-Rest classifier with XGB is a promisingapproachformulti-labeltextclassificationtasks,whichcanprovidebetterresultsthanotherpopularclassifiers