Metabolites (Jul 2022)

Imputation of Missing Values for Multi-Biospecimen Metabolomics Studies: Bias and Effects on Statistical Validity

  • Machelle D. Wilson,
  • Matthew D. Ponzini,
  • Sandra L. Taylor,
  • Kyoungmi Kim

DOI
https://doi.org/10.3390/metabo12070671
Journal volume & issue
Vol. 12, no. 7
p. 671

Abstract

Read online

The analysis of high-throughput metabolomics mass spectrometry data across multiple biological sample types (biospecimens) poses challenges due to missing data. During differential abundance analysis, dropping samples with missing values can lead to severe loss of data as well as biased results in group comparisons and effect size estimates. However, the imputation of missing data (the process of replacing missing data with estimated values such as a mean) may compromise the inherent intra-subject correlation of a metabolite across multiple biospecimens from the same subject, which in turn may compromise the efficacy of the statistical analysis of differential metabolites in biomarker discovery. We investigated imputation strategies when considering multiple biospecimens from the same subject. We compared a novel, but simple, approach that consists of combining the two biospecimen data matrices (rows and columns of subjects and metabolites) and imputes the two biospecimen data matrices together to an approach that imputes each biospecimen data matrix separately. We then compared the bias in the estimation of the intra-subject multi-specimen correlation and its effects on the validity of statistical significance tests between two approaches. The combined approach to multi-biospecimen studies has not been evaluated previously even though it is intuitive and easy to implement. We examine these two approaches for five imputation methods: random forest, k nearest neighbor, expectation-maximization with bootstrap, quantile regression, and half the minimum observed value. Combining the biospecimen data matrices for imputation did not greatly increase efficacy in conserving the correlation structure or improving accuracy in the statistical conclusions for most of the methods examined. Random forest tended to outperform the other methods in all performance metrics, except specificity.

Keywords