A visual circuit related to the parabrachial nucleus for the antipruritic effects of bright light treatment
Zhengfang Hu,
Xiaodan Huang,
Jianyu Liu,
Ziyang Wang,
Yue Xi,
Yan Yang,
Song Lin,
Kwok-Fai So,
Lu Huang,
Qian Tao,
Chaoran Ren
Affiliations
Zhengfang Hu
Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
Xiaodan Huang
Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
Jianyu Liu
Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
Ziyang Wang
Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
Yue Xi
Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
Yan Yang
Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
Song Lin
Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
Kwok-Fai So
Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China; Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
Lu Huang
Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Corresponding author
Qian Tao
Department of Rehabilitation Medicine, First Affiliated Hospital of Jinan University, Department of Public Health and Preventive Medicine Psychology, School of Medicine, Jinan University, Guangzhou 510632, China; Corresponding author
Chaoran Ren
Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China; Corresponding author
Summary: In addition to its role in vision, light also serves non-image-forming visual functions. Despite clinical evidence suggesting the antipruritic effects of bright light treatment, the circuit mechanisms underlying the effects of light on itch-related behaviors remain poorly understood. In this study, we demonstrate that bright light treatment reduces itch-related behaviors in mice through a visual circuit related to the lateral parabrachial nucleus (LPBN). Specifically, a subset of retinal ganglion cells (RGCs) innervates GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which subsequently inhibit CaMKIIα+ neurons in the LPBN. Activation of both the vLGN/IGL-projecting RGCs and the vLGN/IGL-to-LPBN projections is sufficient to reduce itch-related behaviors induced by various pruritogens. Importantly, we demonstrate that the antipruritic effects of bright light treatment rely on the activation of the retina-vLGN/IGL-LPBN pathway. Collectively, our findings elucidate a visual circuit related to the LPBN that underlies the antipruritic effects of bright light treatment.