Microbiology Spectrum (Dec 2022)

Molecular Epidemiology of Neonatal-Associated Staphylococcus haemolyticus Reveals Endemic Outbreak

  • Ronja Westberg,
  • Marc Stegger,
  • Bo Söderquist

Journal volume & issue
Vol. 10, no. 6


Read online

ABSTRACT Staphylococcus haemolyticus is a major cause of late-onset sepsis in neonates, and endemic clones are often multidrug-resistant. The bacteria can also act as a genetic reservoir for more pathogenic bacteria. Molecular epidemiology is important in understanding bacterial pathogenicity and preventing infection. To describe the molecular epidemiology of S. haemolyticus isolated from neonatal blood cultures at a Swedish neonatal intensive care unit (NICU) over 4 decades, including antibiotic resistance genes (ARGs), virulence factors, and comparison to international isolates. Isolates were whole-genome sequenced, and single nucleotide polymorphisms in the core genome were used to map the relatedness. The occurrence of previously described ARGs and virulence genes were investigated. Disc diffusion and gradient tests were used to determine phenotypic resistance. The results revealed a clonal outbreak of S. haemolyticus at this NICU during the 1990s. Multidrug resistance was present in 28 (82%) of all isolates and concomitant resistance to aminoglycoside and methicillin occurred in 27 (79%). No isolates were vancomycin resistant. Genes encoding ARGs and virulence factors occurred frequently. The isolates in the outbreak were more homogenous in their genotypic and phenotypic patterns. Genotypic and phenotypic resistance combinations were consistent. Pathogenic traits previously described in S. haemolyticus occurred frequently in the present isolates, perhaps due to the hospital selection pressure resulting in epidemiological success. The clonal outbreak revealed by this study emphasizes the importance of adhering to hygiene procedures in order to prevent future endemic outbreaks. IMPORTANCE This study investigated the relatedness of Staphylococcus haemolyticus isolated from neonatal blood and revealed a clonal outbreak in the 1990s at a Swedish neonatal intensive care unit. The outbreak clone has earlier been isolated in Japan and Norway. Virulence and antibiotic resistance genes previously associated with clinical S. haemolyticus were frequently occuring in the present study as well. The majority of the isolates were multidrug-resistant. These traits should be considered important for S. haemolyticus epidemiological success and are probably caused by the hospital selection pressure. Thus, this study emphasizes the importance of restrictive antibiotic use and following the hygiene procedures, to prevent further antibiotic resistance spread and future endemic outbreaks.