Brain Sciences (Jan 2021)

KCNA2 Autoimmunity in Progressive Cognitive Impairment: Case Series and Literature Review

  • Charles Timäus,
  • Philipp von Gottberg,
  • Sina Hirschel,
  • Claudia Lange,
  • Jens Wiltfang,
  • Niels Hansen

DOI
https://doi.org/10.3390/brainsci11010089
Journal volume & issue
Vol. 11, no. 1
p. 89

Abstract

Read online

Autoimmune dementia is a novel and expanding field which subsumes neuropsychiatric disorders with predominant cognitive impairments due to an underlying autoimmune etiology. Progressive dementias with atypical clinical presentation should trigger a thorough diagnostic approach including testing for neural surface and intracellular antibodies to avoid a delay in accurate diagnosis and initiating appropriate therapy. Here, we present two emerging cases of progressive dementia with co-existing serum autoantibodies against the KCNA2 (potassium voltage-gated channel subfamily A member 2) subunit. We found various cognitive deficits with dominant impairments in the memory domain, particularly in delayed recall. One patient presented a subacute onset of then-persisting cognitive deficits, while the other patient’s cognitive impairments progressed more chronically and fluctuated. Cognitive impairments coincided with additional neuropsychiatric symptoms. Both had a potential paraneoplastic background according to their medical history and diagnostic results. We discuss the potential role of KCNA2 autoantibodies in these patients and in general by reviewing the literature. The pathogenetic role of KCNA2 antibodies in cognitive impairment is not well delineated; clinical presentations are heterogeneous, and thus a causal link between antibodies remains questionable. Current evidence indicates an intracellular rather than extracellular epitope. We strongly suggest additional prospective studies to explore KCNA2 antibodies in specifically-defined cohorts of cognitively impaired patients via a systematic assessment of clinical, neuropsychological, neuroimaging, as well as laboratory and CSF (cerebrospinal fluid) parameters, and antibody studies to (1) determine the epitope’s location (intracellular vs. extracellular), (2) the mode of action, and (3) seek co-existing, novel pathogenetic autoantibodies in sera and CSF.

Keywords