Scientific Reports (Jun 2022)

Clusterin exacerbates interleukin-1β-induced inflammation via suppressing PI3K/Akt pathway in human fibroblast-like synoviocytes of knee osteoarthritis

  • Tachatra Ungsudechachai,
  • Sittisak Honsawek,
  • Jiraphun Jittikoon,
  • Wanvisa Udomsinprasert

DOI
https://doi.org/10.1038/s41598-022-14295-7
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 12

Abstract

Read online

Abstract This study aimed to examine, a multifaceted chaperon-like protein exerting anti-inflammatory action, clusterin (CLU), mRNA and protein levels in the systemic and local joint environment of knee osteoarthritis (OA) patients and to determine whether CLU inhibited interleukin (IL)-1β-induced inflammation in knee OA fibroblast-like synoviocytes (FLSs) through modulating phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. CLU protein and mRNA expressions in the synovium and its protein levels in plasma and synovial fluid of knee OA patients were measured using immunohistochemistry, real-time PCR, and ELISA, respectively. Anti-inflammatory effect of CLU was further elucidated in knee OA FLSs treated with IL-1β in the absence or presence of CLU, CLU alone, or PI3K inhibitor (LY294002) along with IL-1β and CLU. In a clinical study, compared with knee OA patients without synovitis, CLU protein and mRNA were expressed in the synovium of knee OA patients with synovitis, especially those with high-grade, consistent with analyses of its plasma and synovial fluid levels. CLU mRNA and protein levels were both associated with synovitis severity. An in vitro study uncovered that CLU significantly alleviated IL-1β-induced overproduction of nitric oxide and IL-6 in knee OA FLSs. Furthermore, CLU significantly attenuated inflammation and extracellular matrix degradation induced by IL-1β via down-regulating expressions of IL-6, nuclear factor kappa B, and matrix metalloproteinase-13. Mechanistically, CLU significantly impeded IL-1β-induced Akt phosphorylation in knee OA FLSs, in line with addition of LY294002 along with IL-1β and CLU. These findings suggest that CLU may have potential as a novel therapeutic target for synovitis and cartilage destruction in knee OA.