Pamukkale University Journal of Engineering Sciences (Oct 2019)

Kutuplaştırılmış veri üzerinde ikili sınıflandırma için sürekli zamanlı eşik değeri belirleme

  • Ali SAĞLAM,
  • Nurdan AKHAN BAYKAN

Journal volume & issue
Vol. 25, no. 5
pp. 596 – 602

Abstract

Read online

İkili sınıflandırma, veri elemanlarından bir kısmını belirli karakteristiklerine göre diğerlerinden anlamlı bir şekilde ayırmak için kullanılmaktadır. Denetimli sınıflandırma teknikleri ise genellikle veriden çıkarılacak elemanların ayırt edici karakteristiklerini belirlemeye yardımcı olan referans veriyi kullanmaktadır. Bu teknikler aynı zamanda mevcut özellikleri kullanarak bütün veri için referans veriye uygun olarak yeni özellikler oluşturmaktadır. Yeni özellikler oluşturmanın amaçlarından birisi de çıkarılacak veri elemanlarını ve diğerlerini ikili sınıflandırma için bir koordinat ekseni üzerinde ayrı kutuplara doğru kutuplaştırmaktır. Bu şekilde, sadece bir eksen üzerinde eşik değeri kullanarak, ikili sınıflandırma işlemi kolaylaşmaktadır. Bu çalışmada, veriyi kutuplaştırmak için doğrusal ayrıştırma analizi (DAA) kullanılmış ve bazı belirli eşik değerleriyle elde edilen ikili sınıflandırma çıktılarının harmonik ortalama F-score değerlerini kullanan bir eşik değeri belirleme algoritması önerilmiştir. Önerilen metottaki anahtar durum, en uygun eşik değeri en iyi sınıflandırma başarısını (F-score değerini) vermeli ve diğer eşik değerleri en iyi eşik değerinden uzaklaştıkça (eksenin iki ucuna doğru ilerledikçe) daha düşük sınıflandırma başarısını vermelidir. Önerilen metot, referans görüntüleri de içeren bir 2D anlamsal etiketleme veri kümesinden alınan bir uzaktan algılama görüntüsü üzerinde bazı anlamlı verilerin ikili sınıflandırması için uygulanmıştır. Önerilen metot en iyi eşik değerine sürekli zamanlı olarak belirlenen örnekleme sayısına ve sonlanma ölçütüne göre logaritmik zamanda yakınsamaktadır.

Keywords