Cailiao gongcheng (Nov 2017)

Correlation of Weld Appearance with Microstructure and Mechanical Properties of 2024-T4 Aluminum Alloy Welded by Fiber Laser with Filler Wire

  • XU Fei,
  • CHEN Li,
  • HE En-guang,
  • GUO Lu-yun

DOI
https://doi.org/10.11868/j.issn.1001-4381.2015.001071
Journal volume & issue
Vol. 45, no. 11
pp. 90 – 95

Abstract

Read online

Two typical cross-section of welds, including nail shape and near X shape, are obtained in the process of fiber laser welding 2024-T4 Al alloy with filler wire. The correlations of the two weld appearances and other elements (such as microstructure, microhardness, and joint's tensile properties) were analyzed. The results show that the weld with near X shape cross-section during the welding process is more stable than that with nail shape cross-section, and the welding spatter of the former is smaller than that of the latter. The microstructure of the weld zone is columnar grains and equiaxed grains, the columnar grains are formed near the fusion line and growing along the vertical direction of the fusion line, the equiaxed grains are distributed in the center of the weld zone. The secondary dendrite of the grains in the center of the weld with nail shape cross-section grows better, and gradually forms to equiaxed dendrite, while the grains size of the weld with near X shape cross-section is relatively finer, exhibiting equiaxed cellular grain. Compared with the joint with nail shape cross-section of the weld, the joint with near X shape cross-section of the weld have some different characteristics, the precipitation strengthening phase θ(Al2Cu) content in weld zone of the latter is more than that of the former, the average microhardness value of the weld zone of the latter is higher than that of the former, the softening phenomenon of heat affect zone (HAZ) of the latter is weaker than that of the former, and the joint's tensile strength and plasticity of the latter are lower than that of the former slightly.

Keywords