AKCE International Journal of Graphs and Combinatorics (Sep 2024)
Characterization of rings with planar, toroidal or projective planar prime ideal sum graphs
Abstract
Let R be a commutative ring with unity. The prime ideal sum graph [Formula: see text] of the ring R is the simple undirected graph whose vertex set is the set of all nonzero proper ideals of R and two distinct vertices I and J are adjacent if and only if I + J is a prime ideal of R. In this paper, we study some interplay between algebraic properties of rings and graph-theoretic properties of their prime ideal sum graphs. In this connection, we classify non-local commutative Artinian rings R such that [Formula: see text] is of crosscap at most two. We prove that there does not exist a non-local commutative Artinian ring whose prime ideal sum graph is projective planar. Further, we classify non-local commutative Artinian rings of genus one prime ideal sum graphs.
Keywords