International Journal of Distributed Sensor Networks (Jul 2020)

Intelligent energy optimization for advanced IoT analytics edge computing on wireless sensor networks

  • Israel Edem Agbehadji,
  • Samuel Ofori Frimpong,
  • Richard C Millham,
  • Simon James Fong,
  • Jason J Jung

DOI
https://doi.org/10.1177/1550147720908772
Journal volume & issue
Vol. 16

Abstract

Read online

The current dispensation of big data analytics requires innovative ways of data capturing and transmission. One of the innovative approaches is the use of a sensor device. However, the challenge with a sensor network is how to balance the energy load of wireless sensor networks, which can be achieved by selecting sensor nodes with an adequate amount of energy from a cluster. The clustering technique is one of the approaches to solve this challenge because it optimizes energy in order to increase the lifetime of the sensor network. In this article, a novel bio-inspired clustering algorithm was proposed for a heterogeneous energy environment. The proposed algorithm (referred to as DEEC-KSA) was integrated with a distributed energy-efficient clustering algorithm to ensure efficient energy optimization and was evaluated through simulation and compared with benchmarked clustering algorithms. During the simulation, the dynamic nature of the proposed DEEC-KSA was observed using different parameters, which were expressed in percentages as 0.1%, 4.5%, 11.3%, and 34% while the percentage of the parameter for comparative algorithms was 10%. The simulation result showed that the performance of DEEC-KSA is efficient among the comparative clustering algorithms for energy optimization in terms of stability period, network lifetime, and network throughput. In addition, the proposed DEEC-KSA has the optimal time (in seconds) to send a higher number of packets to the base station successfully. The advantage of the proposed bio-inspired technique is that it utilizes random encircling and half-life period to quickly adapt to different rounds of iteration and jumps out of any local optimum that might not lead to an ideal cluster formation and better network performance.