Haematologica (Sep 2013)

Next-generation-sequencing-spectratyping reveals public T-cell receptor repertoires in pediatric very severe aplastic anemia and identifies a β chain CDR3 sequence associated with hepatitis-induced pathogenesis

  • Pina F. I. Krell,
  • Susanne Reuther,
  • Ute Fischer,
  • Thomas Keller,
  • Stephan Weber,
  • Michael Gombert,
  • Friedhelm R. Schuster,
  • Corinna Asang,
  • Polina Stepensky,
  • Brigitte Strahm,
  • Roland Meisel,
  • Jens Stoye,
  • Arndt Borkhardt

DOI
https://doi.org/10.3324/haematol.2012.069708
Journal volume & issue
Vol. 98, no. 9

Abstract

Read online

Current diagnostic approaches that characterize T-cell deficiency by analyzing diversity of T-cell receptor sequences effectuate limited informational gain about the actual restrictiveness. For deeper insight into T-cell receptor repertoires we developed next-generation-sequencing-spectratyping, which employs high coverage Roche/454 sequencing of T-cell receptor (β)-chain amplicons. For automated analysis of high-throughput-sequencing data, we developed a freely available software, the TCR profiler. Gene usage, length, encoded amino acid sequence and sequence diversity of the complementarity determining region 3 were determined and comprehensively integrated into a novel complexity score. Repertoires of CD8+ T cells from children with idiopathic or hepatitis-induced very severe aplastic anemia (n=7), children two months after bone marrow transplantation (n=7) and healthy controls (children n=5, adults n=5) were analyzed. Complexity scores clearly distinguished between healthy and diseased, and even between different immune deficiency states. The repertoire of aplastic anemia patients was dominated by public (i.e. present in more than one person) T-cell receptor clonotypes, whereas only 0.2% or 1.9% were public in normal children and adults, respectively. The CDR3 sequence ASSGVGFSGANVLT was highly prevalent in 3 cases of hepatitis-induced anemia (15–32% of all sequences), but was only low expressed in idiopathic aplastic anemia (2–5%, n=4) or healthy controls (