Remote Sensing (Mar 2023)

Automated Identification of Landfast Sea Ice in the Laptev Sea from the True-Color MODIS Images Using the Method of Deep Learning

  • Cheng Wen,
  • Mengxi Zhai,
  • Ruibo Lei,
  • Tao Xie,
  • Jinshan Zhu

DOI
https://doi.org/10.3390/rs15061610
Journal volume & issue
Vol. 15, no. 6
p. 1610

Abstract

Read online

Landfast sea ice (LFSI) refers to sea ice attached to the shoreline with little or no horizonal motion in contrast to drifting sea ice. The LFSI plays an important role in the Arctic marine environmental and biological systems. Therefore, it is crucial to accurately monitor the spatiotemporal changes in the LFSI distribution. Here we present an automatic LFSI retrieval method for the Laptev Sea, eastern Arctic Ocean, based on a conditional generative adversarial network Pix2Pix using the true-color images of Moderate Resolution Imaging Spectroradiometer (MODIS). The spatial resolution of the derived product is 1.25 km, with a temporal interval of 7 days. Compared to the manually identified data from the true-color images of MODIS, the average precision of the LFSI area derived from LFSI mapping model reaches 91.4%, with the recall reaching 98.7% and F1-score reaching 94.5%. The LFSI coverage is consistent with the traditional large-scale LFSI products, but provides more details. Intraseasonal and interannual variations in LFSI area of the Laptev Sea in spring (March–May) during the period of 2002–2021 are investigated using the new product. The spring LFSI area in this region decreases at a rate of 0.67 × 103 km2 per year during this period (R2 = 0.117, p < 0.01). According to the spatial and temporal changes, we conclude that the LFSI is becoming more stable while the area is shrinking. The method is fully-automatic and computationally efficient, which can be further applied to the entire Arctic Ocean for LFSI identification and monitoring.

Keywords