AIMS Mathematics (May 2023)

An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator

  • Supriya Kumar Paul ,
  • Lakshmi Narayan Mishra,
  • Vishnu Narayan Mishra,
  • Dumitru Baleanu

DOI
https://doi.org/10.3934/math.2023891
Journal volume & issue
Vol. 8, no. 8
pp. 17448 – 17469

Abstract

Read online

In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space $ C([0, \beta], \mathbb{R}) $. Also, we propose an effective and efficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method.

Keywords