OENO One (May 2017)

Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming

  • Laurent Torregrosa,
  • Antoine Bigard,
  • Agnes Doligez,
  • David Lecourieux,
  • Markus Rienth,
  • Nathalie Luchaire,
  • Philippe Pieri,
  • Ratthaphon Chatbanyong,
  • Rezth Shahood,
  • Marc Farnos,
  • Catherine Roux,
  • Angélique Adiveze,
  • Jérémie Pillet,
  • Yannick Sire,
  • Emmanuelle Zumstein,
  • Mélanie Veyret,
  • Loic Le Cunff,
  • Fatma Lecourieux,
  • Nicolas Saurin,
  • Bertrand Muller,
  • Hernán Ojeda,
  • Cléa Houel,
  • Jean-Pierre Péros,
  • Patrice This,
  • Anne Pellegrino,
  • Charles Romieu

DOI
https://doi.org/10.20870/oeno-one.2016.0.0.1587
Journal volume & issue
Vol. 51, no. 2
pp. 155 – 165

Abstract

Read online

Aim: In the long term, genetic improvement is one of the major strategies to support sustainable wine production in a changing climate. Over the past 5 years, we have developed an interdisciplinary research program that aimed to: i) characterize the impact of temperature increase sensed by the entire plant or individual bunches on the development and functioning of the plant, ii) identify the physiological and molecular mechanisms regulating the response of vegetative and reproductive development to heat stress and iii) develop tools to map quantitative trait loci (QTLs) of plant and berry development in duly controlled, stable, and contrasting environmental conditions. Methods and results: Performing high-throughput genomic analyses combined with the use of innovative experimental designs (fruiting cuttings, microvines, single berry sampling) was critical to decipher the ecophysiological and molecular mechanisms involved in the vine response to high temperature. Conclusion: Warming promotes vegetative growth and hampers plant carbon balance, disturbing flower set and young berry development. High temperatures modify primary and secondary fruit metabolisms, desynchronizing sugar and organic acid metabolisms and delaying sugar and polyphenol accumulation during ripening. The study of day and night transcriptomic and proteomic signatures associated with heat highlighted key players of the response to temperature in the fruit. Significance and impact of the study: Capitalizing on this knowledge, a new program is being proposed for the selection of cultivars limiting the accumulation of sugars in the berry while maintaining other qualitative compounds.

Keywords