Journal of Mathematics (Jan 2021)
Computation of the Double Metric Dimension in Convex Polytopes
Abstract
A source detection problem in complex networks has been studied widely. Source localization has much importance in order to model many real-world phenomena, for instance, spreading of a virus in a computer network, epidemics in human beings, and rumor spreading on the internet. A source localization problem is to identify a node in the network that gives the best description of the observed diffusion. For this purpose, we select a subset of nodes with least size such that the source can be uniquely located. This is equivalent to find the minimal doubly resolving set of a network. In this article, we have computed the double metric dimension of convex polytopes Rn and Qn by describing their minimal doubly resolving sets.