Axioms (Jul 2023)

Synchronization of Fractional Partial Difference Equations via Linear Methods

  • Ibraheem Abu Falahah,
  • Amel Hioual,
  • Mowafaq Omar Al-Qadri,
  • Yazan Alaya AL-Khassawneh,
  • Abdallah Al-Husban,
  • Tareq Hamadneh,
  • Adel Ouannas

DOI
https://doi.org/10.3390/axioms12080728
Journal volume & issue
Vol. 12, no. 8
p. 728

Abstract

Read online

Discrete fractional models with reaction-diffusion have gained significance in the scientific field in recent years, not only due to the need for numerical simulation but also due to the stated biological processes. In this paper, we investigate the problem of synchronization-control in a fractional discrete nonlinear bacterial culture reaction-diffusion model using the Caputo h-difference operator and a second-order central difference scheme and an L1 finite difference scheme after deriving the discrete fractional version of the well-known Degn–Harrison system and Lengyel–Epstein system. Using appropriate techniques and the direct Lyapunov method, the conditions for full synchronization are determined.Furthermore, this research shows that the L1 finite difference scheme and the second-order central difference scheme may successfully retain the properties of the related continuous system. The conclusions are proven throughout the paper using two major biological models, and numerical simulations are carried out to demonstrate the practical use of the recommended technique.

Keywords