Advances in Operations Research (Jan 2010)

Exact Decomposition Approaches for Markov Decision Processes: A Survey

  • Cherki Daoui,
  • Mohamed Abbad,
  • Mohamed Tkiouat

DOI
https://doi.org/10.1155/2010/659432
Journal volume & issue
Vol. 2010

Abstract

Read online

As classical methods are intractable for solving Markov decision processes (MDPs) requiring a large state space, decomposition and aggregation techniques are very useful to cope with large problems. These techniques are in general a special case of the classic Divide-and-Conquer framework to split a large, unwieldy problem into smaller components and solving the parts in order to construct the global solution. This paper reviews most of decomposition approaches encountered in the associated literature over the past two decades, weighing their pros and cons. We consider several categories of MDPs (average, discounted, and weighted MDPs), and we present briefly a variety of methodologies to find or approximate optimal strategies.