Journal of Orthopaedic Surgery and Research (Jul 2024)
Injectable bone cement cannulated pedicle screw for lumbar degenerative disease in osteoporosis - clinical follow-up of over 5 years
Abstract
Abstract Objective The aim of this study is to evaluate the clinical efficacy of injectable cemented hollow pedicle screw (CICPS) in the treatment of osteoporotic lumbar degenerative diseases through a large sample long-term follow-up study. Additionally, we aim to explore the risk factors affecting interbody fusion. Methods A total of 98 patients who underwent CICPS for transforaminal lumbar interbody fusion (TLIF) for osteoporotic lumbar degenerative disease from March 2011 to September 2017 were analyzed. X-ray and electronic computed tomography (CT) imaging data were collected during preoperative, postoperative, and follow-up periods. The data included changes in intervertebral space height (ΔH), screw failure, cement leakage (CL), and intervertebral fusion. The patients were divided into two groups based on their fusion status one year after surgery: satisfied group A and dissatisfied group B. Surgical data such as operation time, intraoperative bleeding volume and surgical complications were recorded, and visual analog scale (VAS) and Oswestry disability index (ODI) were used to evaluate the improvement of lumbar and leg pain. Results The mean follow-up time was 101.29 months (ranging from 70 to 128 months). A total of 320 CICPS were used, with 26 screws (8.13%) leaking, 3 screws (0.94%) experiencing cement augmentation failure, and 1 screw (0.31%) becoming loose and breaking. The remaining screws were not loose or pulled out. Female gender, decreased bone density, and CL were identified as risk factors affecting interbody fusion (P < 0.05). Early realization of interbody fusion can effectively prevent the loss of intervertebral space height (P < 0.05) and maintain the surgical treatment effect. Both VAS and ODI scores showed significant improvement during the follow-up period (P < 0.05). Binary logistic regression analysis revealed that decreased bone density and cement leakage were risk factors for prolonged interbody fusion. Conclusions The results of long-term follow-up indicate that PMMA enhanced CICPS has unique advantages in achieving good clinical efficacy in the treatment of osteoporosis lumbar degenerative diseases. Attention should be paid to identify female gender, severe osteoporosis, and CL as risk factors affecting interbody fusion.
Keywords