Energies (Sep 2019)

Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties

  • Renas Hasan Saeed Saeed,
  • Youssef Kassem,
  • Hüseyin Çamur

DOI
https://doi.org/10.3390/en12193729
Journal volume & issue
Vol. 12, no. 19
p. 3729

Abstract

Read online

Waste frying, corn and canola cooking oil biodiesels were produced through the transesterification ‎process and their properties were measured. Three different mixtures of biodiesel with the same blending ratio, namely, WCME1 (frying-corn biodiesel), WCME2 (frying-canola-corn biodiesel) and WCME3 (canola-corn biodiesel), were prepared. The effect ‎of ‎blending ‎biodiesel with various ages ‎‎(zero months (WCME3), eight months (WCME1), and 30 months (WCME2)) on kinematic ‎viscosity and‎ density was investigated under varying temperature and volume fraction. It was found that the kinematic viscosity of WCME2 remained within the ranges listed in ASTM D445 (‎1.9−6.0‎ mm2/s) and EN-14214‎ (‎3.5−5.0‎ mm2/s) at 30 months. It was also observed that both viscosity and density decreased as the temperature increased for each fuel sample. In order to improve the cold flow properties of the samples, the Computer-Aided ‎Cooling Curve Analysis (CACCA) technique was used to explore the crystallization/melting ‎profiles of ‎pure ‎methyl biodiesel as ‎well their blends. The results show that pure WCME2 has the lowest cold flow properties compared to other samples. Furthermore, 10 ‎correlations ‎were developed, tested and compared with generalized ‎correlations for the ‎estimation of the ‎viscosity and densities of pure biodiesels and their ‎blends. These equations depend on the temperature and volume fraction of pure components as well as the properties of the fuel.

Keywords