Nature Communications (Jan 2021)

Lossless integration of multiple electronic health records for identifying pleiotropy using summary statistics

  • Ruowang Li,
  • Rui Duan,
  • Xinyuan Zhang,
  • Thomas Lumley,
  • Sarah Pendergrass,
  • Christopher Bauer,
  • Hakon Hakonarson,
  • David S. Carrell,
  • Jordan W. Smoller,
  • Wei-Qi Wei,
  • Robert Carroll,
  • Digna R. Velez Edwards,
  • Georgia Wiesner,
  • Patrick Sleiman,
  • Josh C. Denny,
  • Jonathan D. Mosley,
  • Marylyn D. Ritchie,
  • Yong Chen,
  • Jason H. Moore

DOI
https://doi.org/10.1038/s41467-020-20211-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Thus far, pleiotropy analysis using individual-level Electronic Health Records data has been limited to data from one site. Here, the authors introduce Sum-Share, a method designed to efficiently and losslessly integrate EHR and genetic data from multiple sites to perform pleiotropy analysis.