Scientific Drilling (Dec 2019)
Workshop report on hard-rock drilling into mid-Cretaceous Pacific oceanic crust on the Hawaiian North Arch
Abstract
The architecture, formation, and modification of oceanic plates are fundamental to our understanding of key geologic processes of the Earth. Geophysical surveys were conducted around a site near the Hawaiian Islands (northeastern Hawaiian North Arch region; Hawaiian North Arch hereafter), which is one of three potential sites for an International Ocean Discovery Program mantle drilling proposal for the Pacific plate that was submitted in 2012. The Hawaiian North Arch site is located in 78–81 Ma Cretaceous crust, which had an estimated full spreading rate of 7–8 cm yr−1. This site fills a major gap in our understanding of oceanic crust. Previously drilling has been skewed to young or older crust (<15 or >110 Ma) and slow-spread crust. P-wave velocity structure in the uppermost mantle of the Hawaiian North Arch shows a strong azimuthal anisotropy, whereas Moho reflections below the basement are variable: strong and continuous, weak, diffuse, or unclear. We assume that the strength of the Moho reflection is related to the aging of the oceanic plate. The Hawaiian volcanic chain (200 km to the southwest of the proposed drill site) and the nearby North Arch magmatism on the proposed Hawaiian North Arch sites might also have affected recognition of the Moho via deformation and/or magma intrusion into the lower crust of the uppermost mantle. This workshop report describes scientific targets for 2 km deep-ocean drilling in the Hawaiian North Arch region in order to provide information about the lower crust from unrecovered age and spreading rate gaps from previous ocean drillings. Other scientific objectives to be achieved by drilling cores before reaching the target depth of the project are also described in this report.