Ecology and Evolution (Mar 2021)
Sandpipers go with the flow: Correlations between estuarine conditions and shorebird abundance at an important stopover on the Pacific Flyway
Abstract
Abstract Estuaries of major rivers provide important stopover habitat for migratory birds throughout the world. These estuaries experience large amounts of freshwater inputs from spring runoff. Understanding how freshwater inputs affect food supply for migrating birds, and how birds respond to these changes will be essential for effective conservation of critical estuarine habitats. We estimated trends over time in counts of Western Sandpiper (Calidris mauri) and Pacific Dunlin (Calidris alpina pacifica) during northward migration on the Fraser River estuary, British Columbia, Canada, where shorebirds feed extensively on intertidal biofilm and invertebrates. We also examined whether counts were correlated with a suite of environmental variables related to local conditions (precipitation, temperature, wind speed and direction, solar radiation, tidal amplitude, and discharge rates from the Fraser River) during a total of 540 surveys from 1991 to 2019. Counts of Western Sandpiper declined ~54% (−2.0% per annum) over the entire study period, and 23% from 2009 to 2019 (−0.9% per annum). Counts of Pacific Dunlin did not show a statistically significant change over the study period. Counts of shorebirds were lower when discharge from the Fraser River was high, which we propose results from a complex interaction between the abrupt changes in salinity and the estuarine food web related to the quantity or quality of intertidal biofilm. Counts were also higher when tidal amplitude was lower (neap tides), potentially related to longer exposure times of the mudflats than during spring tides. Effects of wind are likely related to birds delaying departure from the stopover site during unfavorable wind conditions. The negative trend in migrating Western Sandpipers is consistent with declines in nonbreeding areas as observed in Christmas Bird Counts. Understanding causes of population change in migratory shorebirds highlights the need for research on mechanistic pathways in which freshwater inputs affect food resources at estuarine stopovers.
Keywords