Mathematics Interdisciplinary Research (Dec 2024)

Flexible Parsimonious Mixture of Skew Factor Analysis‎ ‎Based‎ ‎on‎ ‎Normal‎ ‎Mean--Variance Birnbaum-Saunders

  • Farzane Hashemi,
  • Jalal Askari,
  • Saeed Darijani

DOI
https://doi.org/10.22052/mir.2024.254416.1459
Journal volume & issue
Vol. 9, no. 4
pp. 385 – 411

Abstract

Read online

‎The purpose of this paper is to extend the mixture factor analyzers (MFA) model \CG{to handle} missing and heavy-\CG{tailed} data‎. ‎In this model‎, ‎the distribution of factors loading and errors arise from the multivariate normal mean-variance mixture of‎ \CG{the} Birnbaum-Saunders (NMVBS) distribution‎. ‎By using the structures covariance matrix‎, ‎we introduce parsimonious MFA based on NMVBS distribution‎. ‎An Expectation Maximization (EM)-type algorithm is developed for parameter estimation‎. ‎Simulations study and real data sets represent the efficiency and performance of the proposed model‎.

Keywords