Chinese Journal of Lung Cancer (Dec 2020)

Screening and Identification of the Peptides Specifically Binding to 
Human Non-small Cell Lung Cancer NCI-H1299 Cells

  • Qi ZUO,
  • Chao GUO,
  • Weiping FAN,
  • Xiaofeng YANG,
  • Fan ZHANG

DOI
https://doi.org/10.3779/j.issn.1009-3419.2020.103.17
Journal volume & issue
Vol. 23, no. 12
pp. 1023 – 1030

Abstract

Read online

Background and objective Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer, and one of the malignant tumor with the highest mortality. As the main part of the optical molecular imaging probe, peptide can realize the early screening and diagnosis of tumor and improve the survival rate of patients. The aim of this study was to screen the small-molecule peptide that highly binds to NSCLC NCI-H1299 cells using in vivo phage display technology and to identify their binding specificity by in vitro experiment. Methods To prepare a tumor-bearing nude mouse model of NCI-H1299 cells, after 3 rounds of in vivo screening with Ph.D.-C7CTM Peptide Library, phage clones were randomly picked, using immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) to identify the affinity of phage clones to NCI-H1299 cells. The positive monoclonal phages DNA was extracted and sequenced to obtain the amino acid sequence of the peptides. The peptides with the highest repetition rate was chemically synthesized and labeled with fluorescein (FITC) to prepare optical molecular probe. We preliminary identified the specificity of the probe binding to lung cancer cells by in vitro experiment. Results After three rounds of in vivo screening, the phages enrichment rate was 341.3 times compared with the first round. Immunohistochemical staining showed that with the increase of screening times, the phages binding to tumor tissues continued to increase, and the binding amount was significantly higher than normal tissues; ELISA results showed that 20 clones among the 30 randomly selected phage clones were positive. After sequencing, the peptide with the highest repetition rate was synthesized and named NSP1; Methyl thiazolyl tetrazolium assay (MTT) and would healing assay showed that NSP1 will not affect cell proliferation and migration. Flow cytometry and immunofluorescence showed specific binding of NSP1 to NCI-H1299 cells. Conclusion We successfully obtained the peptide NSP1 that specifically binds to lung cancer NCI-H1299 cells by in vivo phage display, which provide a theoretical basis for NSCLC early diagnosis and targeted therapy.

Keywords