Molecular Neurodegeneration (Sep 2011)

Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold

  • Hof Patrick R,
  • Andreasson Katrin I,
  • Woodling Nathaniel S,
  • Schoen Michael,
  • Arons Magali,
  • Udvardi Patrick T,
  • Schmeisser Michael J,
  • Grabrucker Andreas M,
  • Buxbaum Joseph D,
  • Garner Craig C,
  • Boeckers Tobias M

DOI
https://doi.org/10.1186/1750-1326-6-65
Journal volume & issue
Vol. 6, no. 1
p. 65

Abstract

Read online

Abstract Background Memory deficits in Alzheimer's disease (AD) manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ) is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation. Results To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels. Conclusions We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.

Keywords