Hydrology (Feb 2018)

Quantifying Processes Governing Nutrient Concentrations in a Coastal Aquifer via Principal Component Analysis

  • Alanna L. Lecher,
  • Joseph Murray,
  • Adina Paytan

DOI
https://doi.org/10.3390/hydrology5010015
Journal volume & issue
Vol. 5, no. 1
p. 15

Abstract

Read online

Submarine groundwater discharge (SGD) is an important source of nutrients to coastal ecosystems. The flux of nutrients associated with SGD is governed by the volumetric discharge of groundwater and the concentrations of nutrients in groundwater within the coastal aquifer. Nutrient concentrations in the coastal aquifer, in turn, are controlled by processes such as mixing, precipitation, adsorption-desorption, the decay of organic material, and nitrogen-fixation/denitrification. In this study, Principal Component Analysis (PCA) was applied to groundwater and ocean water nutrient concentration data from Monterey Bay, California, to identify and rank processes controlling coastal aquifer nutrient concentrations. Mixing with seawater, denitrification, the decay of organic matter, and desorption of phosphate were determined to be the three most important processes accounting for 39%, 19%, 14%, and 12% of the variability, respectively. This study shows how PCA can be applied to SGD studies to quantify the relative contribution of different processes controlling nutrient concentrations in coastal aquifers.

Keywords