Remote Sensing (Feb 2023)

Construction of Urban Thermal Environment Network Based on Land Surface Temperature Downscaling and Local Climate Zones

  • Xueling Zhang,
  • Alimujiang Kasimu,
  • Hongwu Liang,
  • Bohao Wei,
  • Yimuranzi Aizizi,
  • Yongyu Zhao,
  • Rukeya Reheman

DOI
https://doi.org/10.3390/rs15041129
Journal volume & issue
Vol. 15, no. 4
p. 1129

Abstract

Read online

It has become undeniable that global land surface temperature (LST) has continued to rise in recent years. The threat of extreme heat to humans has become self-evident, especially in arid regions. Many studies have clarified the temperature rise/fall mechanism of LST from the perspective of influencing factors. However, there are few studies on mitigating LST from the standpoint of regional networks. This paper first combines Landsat 8 with Sentinel-2 imagery for LST downscaling based on the Google Earth engine as a way to match local climate zone (LCZ) with 17 classification types. Then, the thermal environment resistance surface is constructed according to LCZ, and the essential cold sources are identified using morphological spatial pattern analysis (MSPA) and circuit theory to form the thermal environment green corridor and obtain the pinch point and barrier point areas. The results show that (1) The downscaling of LST based on random forest (RF) for the Urumqi–Changji–Wujiaqu metropolitan area has an R2 of 0.860 and an RMSE of 3.23, with high downscaling accuracy. (2) High temperature (HT), medium temperature (MT), and low temperature (LT) have the largest proportions in the study area; HT dominates in Urumqi, LT in Changji, and MT in Wujiaqu. (3) The natural types (LCZ-D, LCZ-C, and LCZ-F) in the LCZ classification occupy a large area, and the building types are mainly concentrated in Urumqi; LCZ-D, LCZ-G, and LCZ-A contribute the most to the cooling of LST, and LCZ-F, LCZ-C, and LCZ-10 contribute the most to the warming of LST. (4) After identifying critical cold source patches according to MSPA to arrive at 253 green corridors, subsensitive corridors and sensitive corridors need to take certain measures to prevent corridor blockage; pinch point areas, as well as barrier point areas, need to be protected and repaired according to their respective characteristics. In summary, corresponding cooling measures to specific areas can improve the connectivity between cooling sources and slow down the temperature increase of the whole area. This study and experimental approach can provide new insights for urban planners and climate researchers.

Keywords