Journal of Astronomy and Space Sciences (Mar 2024)
Classification of Subgroups of Solar and Heliospheric Observatory (SOHO) Sungrazing Kreutz Comet Group by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Algorithm
Abstract
Sungrazing comets, known for their proximity to the Sun, are traditionally classified into broad groups like Kreutz, Marsden, Kracht, Meyer, and non-group comets. While existing methods successfully categorize these groups, finer distinctions within the Kreutz subgroup remain a challenge. In this study, we introduce an automated classification technique using the densitybased spatial clustering of applications with noise (DBSCAN) algorithm to categorize sungrazing comets. Our method extends traditional classifications by finely categorizing the Kreutz subgroup into four distinct subgroups based on a comprehensive range of orbital parameters, providing critical insights into the origins and dynamics of these comets. Corroborative analyses validate the accuracy and effectiveness of our method, offering a more efficient framework for understanding the categorization of sungrazing comets.
Keywords