PLoS ONE (Jan 2013)

Transcriptome analysis of proximal tubular cells (HK-2) exposed to urines of type 1 diabetes patients at risk of early progressive renal function decline.

  • Krzysztof Wanic,
  • Bozena Krolewski,
  • Wenjun Ju,
  • Grzegorz Placha,
  • Monika A Niewczas,
  • William Walker,
  • James H Warram,
  • Matthias Kretzler,
  • Andrzej S Krolewski

DOI
https://doi.org/10.1371/journal.pone.0057751
Journal volume & issue
Vol. 8, no. 3
p. e57751

Abstract

Read online

BackgroundIn patients with Type 1 Diabetes (T1D) who develop microalbuminuria, progressive decline in glomerular filtration rate (GFR) may be initiated by leakage into the urine of toxic proteins (txUPs). This study tested this hypothesis.MethodsAfter archiving baseline urine, we followed T1D patients with microalbuminuria for 8-12 years to distinguish those in whom GFR declined (Decliners) and those in whom it remained stable (Non-decliners). Human proximal tubular cells (HK-2 cells) were grown in serum-free medium enriched with pooled urines from Decliners or Non-decliners. We determined genome-wide expression profiles in extracted mRNA.ResultsThe two pooled urines induced differential expression of 312 genes. In terms of gene ontology, molecular functions of the 119 up-regulated genes were enriched for protein binding and peptidase inhibitor activities. Their biologic processes were enriched for defense response, responses to other organisms, regulation of cellular processes, or response to stress or stimulus, and programmed cell death. The 195 down-regulated genes were disproportionately represented in molecular functions of cation binding, hydrolase activity, and DNA binding. They were disproportionately represented in biological processes for regulation of metabolic processes, nucleic acid metabolic processes, cellular response to stress and macromolecule biosynthesis. The set of up-regulated genes in HK-2 cells overlaps significantly with sets of over-expressed genes in tubular and interstitial compartments of kidney biopsies from patients with advanced DN (33 genes in one study and 25 in the other compared with 10.3 expected by chance, pConclusionsMolecular processes in tubules and interstitium seen in advanced diabetic nephropathy can be induced in vitro by exposure to urine from patients with minimal microalbuminuria who subsequently developed progressive renal function decline, presumably due to putative txUPs.