Cells (Sep 2021)

Deep Learning to Decipher the Progression and Morphology of Axonal Degeneration

  • Alex Palumbo,
  • Philipp Grüning,
  • Svenja Kim Landt,
  • Lara Eleen Heckmann,
  • Luisa Bartram,
  • Alessa Pabst,
  • Charlotte Flory,
  • Maulana Ikhsan,
  • Sören Pietsch,
  • Reinhard Schulz,
  • Christopher Kren,
  • Norbert Koop,
  • Johannes Boltze,
  • Amir Madany Mamlouk,
  • Marietta Zille

DOI
https://doi.org/10.3390/cells10102539
Journal volume & issue
Vol. 10, no. 10
p. 2539

Abstract

Read online

Axonal degeneration (AxD) is a pathological hallmark of many neurodegenerative diseases. Deciphering the morphological patterns of AxD will help to understand the underlying mechanisms and develop effective therapies. Here, we evaluated the progression of AxD in cortical neurons using a novel microfluidic device together with a deep learning tool that we developed for the enhanced-throughput analysis of AxD on microscopic images. The trained convolutional neural network (CNN) sensitively and specifically segmented the features of AxD including axons, axonal swellings, and axonal fragments. Its performance exceeded that of the human evaluators. In an in vitro model of AxD in hemorrhagic stroke induced by the hemolysis product hemin, we detected a time-dependent degeneration of axons leading to a decrease in axon area, while axonal swelling and fragment areas increased. Axonal swellings preceded axon fragmentation, suggesting that swellings may be reliable predictors of AxD. Using a recurrent neural network (RNN), we identified four morphological patterns of AxD (granular, retraction, swelling, and transport degeneration). These findings indicate a morphological heterogeneity of AxD in hemorrhagic stroke. Our EntireAxon platform enables the systematic analysis of axons and AxD in time-lapse microscopy and unravels a so-far unknown intricacy in which AxD can occur in a disease context.

Keywords