Uludağ University Journal of The Faculty of Engineering (Aug 2024)

GERİ YAYILIMLI BİRLİKTE EVRİM İLE İYİLEŞTİRİLMİŞ DERİN SİNİR AĞLARI KULLANILARAK YOL ÇATLAK TESPİTİ

  • Turan Arslan,
  • Emirhan Mustafa Anık

DOI
https://doi.org/10.17482/uumfd.1469361
Journal volume & issue
Vol. 29, no. 2
pp. 555 – 566

Abstract

Read online

Karayolu esnek üstyapılarındaki çatlaklar genellikle trafik yükleri ve hava koşullarından kaynaklanır. Bu çatlakların genişlemeden tespit edilip gerekli bakımlarının yapılması, yol konforunun sürekliliğini sağlamanın yanı sıra bakım maliyetlerini de azaltacaktır. Bu çalışma, yoldaki çatlakları gerçek zamanlı ve yüksek doğrulukla tespit etmeyi amaçlamaktadır. Bu bağlamda, Geri Yayımlı Birlikte Evrim yaklaşımıyla İyileştirilmiş Derin Sinir Ağları ve görüntü işleme yöntemleri birlikte kullanılmıştır. Ayrıca, çeşitli sayı ve çözünürlüklerde çatlaklı görsel veriler içeren EdmCrack600, AsphaltCrack, CFD ve CrackSegmentation veri setleri kullanılarak yeni bir veri seti oluşturulmuş ve bu veri seti üzerinde Derin Sinir Ağları tabanlı öğrenme gerçekleştirilmiştir. Modelin doğruluğu, CFD veri seti kullanılarak Kesinlik, Duyarlılık ve F1-Skoru ile değerlendirilmiştir. Değerlendirme sonucunda, önerilen yöntemin saniyede 48 görsel üzerinde çatlak tespit edebildiği ve %92,74 Kesinlik, %88,92 Duyarlılık ve %89,61 F1 Skoru başarı oranlarına ulaştığı gözlemlenmiştir.

Keywords