Insects (Jul 2023)

Behavioral, Electrophysiological, and Toxicological Responses of <i>Plutella xylostella</i> to Extracts from <i>Angelica pubescens</i>

  • Ruirui Zheng,
  • Jinyu Zhao,
  • Li Ma,
  • Xingtao Qie,
  • Xizhong Yan,
  • Chi Hao

DOI
https://doi.org/10.3390/insects14070613
Journal volume & issue
Vol. 14, no. 7
p. 613

Abstract

Read online

Plutella xylostella L. is a destructive pest affecting cruciferous vegetables, causing massive economic losses worldwide. Plant−based insecticides are considered promising insect control agents. The Angelica pubescens extract inhibited female oviposition, with an oviposition deterrence index (ODI) of 61.65% at 12.5 mg/mL. We aimed to identify the bioactive compounds in A. pubescens extract. The compounds from A. pubescens extract were analyzed using LC−MS techniques. The toxicity and behavioral responses of larvae and adults of P. xylostella to ten compounds were investigated. We found that the caryophyllene oxide and 3,4-dimethoxycinnamic acid inhibited female oviposition; the ODIs were 98.31% and 97.59% at 1.25 mg/mL, respectively. The A. pubescens extract, caryophyllene oxide, and 3,4-dimethoxycinnamic acid caused larval mortality, with LC50 values of 21.31, 4.56, and 5.52 mg/mL, respectively. The EAG response of females was higher than that of males under A. pubescens extract conditions, while the EAG response of males was higher than that of females in caryophyllene oxide and 3,4-dimethoxycinnamic acid conditions. The A. pubescens extract and caryophyllene oxide showed repellent activity against both female and male adults, while the 3,4-dimethoxycinnamic acid did not elicit any notable behavioral responses from P. xylostella adults. A. pubescens extract and caryophyllene oxide are potential insecticides, oviposition deterrents, and behavioral regulators against P. xylostella, and they could be potential candidates for the development of biological insecticides to control P. xylostella.

Keywords