Red blood cell flickering activity locally controlled by holographic optical tweezers
Niccolò Caselli,
Mario García-Verdugo,
Macarena Calero,
Natalia Hernando-Ospina,
José A. Santiago,
Diego Herráez-Aguilar,
Francisco Monroy
Affiliations
Niccolò Caselli
Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain; Corresponding author
Mario García-Verdugo
Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
Macarena Calero
Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain; Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Villanueva de la Cañada 28692 Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Madrid, España
Natalia Hernando-Ospina
Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
José A. Santiago
Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Vasco de Quiroga 4871, Ciudad de México 05348, México
Diego Herráez-Aguilar
Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Pozuelo de Alarcón, Madrid, Spain
Francisco Monroy
Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain; Corresponding author
Summary: Red blood cells possess a singular mechanobiology, enabling efficient navigation through capillaries smaller than their own size. Their plasma membrane exhibits non-equilibrium shape fluctuation, often reported as enhanced flickering activity. Such active membrane motion is propelled by motor proteins that mediate interactions between the spectrin skeleton and the lipid bilayer. However, modulating the flickering in living red blood cells without permanently altering their mechanical properties represents a significant challenge. In this study, we developed holographic optical tweezers to generate a force field distributed along the equatorial membrane contour of individual red blood cells. In free-standing red blood cells, we observed heterogeneous flickering activity, attributed to localized membrane kickers. By employing holographic optical forces, these active kickers can be selectively halted under minimal invasion. Our findings shed light on the dynamics of membrane flickering and established a manipulation tool that could open new avenues for investigating mechanotransduction processes in living cells.