Diagnostic Pathology (Jan 2024)

A risk model based on 10 ferroptosis regulators and markers established by LASSO-regularized linear Cox regression has a good prognostic value for ovarian cancer patients

  • Tingchuan Xiong,
  • Yinghong Wang,
  • Changjun Zhu

DOI
https://doi.org/10.1186/s13000-023-01414-9
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Ovarian cancer is the deadliest gynecologic cancer due to its high rate of recurrence and limited early diagnosis. For certain patients, particularly those with recurring disorders, standard treatment alone is insufficient in the majority of cases. Ferroptosis, an iron- and ROS (reactive oxygen species)-reliant cell death, plays a vital role in the occurrence of ovarian cancer. Herein, subjects from TCGA-OV were calculated for immune scores using the ESTIMATE algorithm and assigned into high- (N = 185) or low-immune (N = 193) score groups; 259 ferroptosis regulators and markers were analyzed for expression, and 64 were significantly differentially expressed between two groups. These 64 differentially expressed genes were applied for LASSO-regularized linear Cox regression for establishing ferroptosis regulators and a markers-based risk model, and a 10-gene signature was established. The ROC curve indicated that the risk score-based curve showed satisfactory predictive efficiency. Univariate and multivariate Cox risk regression analyses showed that age and risk score were risk factors for ovarian cancer patients’ overall survival; patients in the high-risk score group obtained lower immune scores. The Nomogram analysis indicated that the model has a good prognostic performance. GO functional enrichment annotation confirmed again the involvement of these 10 genes in ferroptosis and immune activities. TIMER online analysis showed that risk factors and immune cells were significantly correlated. In conclusion, the risk model based on 10 ferroptosis regulators and markers has a good prognostic value for ovarian cancer patients.

Keywords