International Journal of Nanomedicine (Oct 2021)

Coating CoCrMo Alloy with Graphene Oxide and ϵ-Poly-L-Lysine Enhances Its Antibacterial and Antibiofilm Properties

  • Guo J,
  • Cao G,
  • Wang X,
  • Tang W,
  • Diwu W,
  • Yan M,
  • Yang M,
  • Bi L,
  • Han Y

Journal volume & issue
Vol. Volume 16
pp. 7249 – 7268

Abstract

Read online

Jianbin Guo,1,2,* Guihua Cao,3,* Xing Wang,1 Wenhao Tang,1 Weilong Diwu,1 Ming Yan,1 Min Yang,1 Long Bi,1 Yisheng Han1 1Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China; 2Department of Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China; 3Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China*These authors contributed equally to this workCorrespondence: Yisheng Han; Long Bi Email [email protected]; [email protected]: With increases in implant infections, the search for antibacterial and biofilm coatings has become a new interest for orthopaedists and dentists. In recent years, graphene oxide (GO) has been extensively studied for its superior antibacterial properties. However, most of these studies have focused on solutions and there are few antibacterial studies on metal surfaces, especially the surfaces of cobalt-chromium-molybdenum (CoCrMo) alloys. ϵ-Poly-L-lysine (ϵ-PLL), as a novel food preservative, has a spectrum of antimicrobial activity; however, its antimicrobial activity after coating an implant surface is not clear.Methods: In this study, for the first time, a two-step electrodeposition method was used to coat GO and ϵ-PLL on the surface of a CoCrMo alloy. Its antibacterial and antibiofilm properties against S. aureus and E. coli were then studied.Results: The results show that the formation of bacteria and biofilms on the coating surface was significantly inhibited, GO and ϵ-PLL composite coatings had the best antibacterial and antibiofilm effects, followed by ϵ-PLL and GO coatings. In terms of classification, the coatings are anti-adhesive and contact-killing/inhibitory surfaces. In addition to oxidative stress, physical damage to GO and electrostatic osmosis of ϵ-PLL are the main antibacterial and antibiofilm mechanisms.Discussion: This is the first study that GO and ϵ-PLL coatings were successfully prepared on the surface of CoCrMo alloy by electrodeposition. It provides a promising new approach to the problem of implant infection in orthopedics and stomatology.Keywords: graphene oxide, ϵ-poly-L-lysine, antibacterial, antibiofilm, electroplating

Keywords